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Our understanding of the Solar System has been revolutionized over the past decade by the ®nding that the orbits of the planets are
inherently chaotic. In extreme cases, chaotic motions can change the relative positions of the planets around stars, and even eject
a planet from a system. Moreover, the spin axis of a planetÐEarth's spin axis regulates our seasonsÐmay evolve chaotically,
with adverse effects on the climates of otherwise biologically interesting planets. Some of the recently discovered extrasolar
planetary systems contain multiple planets, and it is likely that some of these are chaotic as well.

O
bservers have targeted solar-type stars in their searches
for planets, partly motivated by the belief that these
stars might harbour Earth-like planets. Although pre-
sent detection techniques are unable to detect terres-
trial-mass planets, they are sensitive to Jupiter-mass

bodies. The original idea was that because all of these solar systems
should share a common planet formation process they would result
in similar collections of planets; large planets might be accompanied
by smaller counterparts. However, the wide variety of orbits of the
planets detected so far shows that our knowledge of planet forma-
tion is incomplete. Nevertheless, although the formation processes
in other solar systems might be quite different from those that
shaped our own, the long-term dynamical evolution is governed by
the same principles.

These principles have been known since Newton, but their
consequences for our Solar System still surprise researchers. For
nearly 300 years astronomers believed that the orbits of the planets
were regular and predictable. After an initial phase of formation, the
number of planets, asteroids and comets was ®xed. Planets neither
escaped the Solar System nor collided with each other. The dis-
covery of chaos destroyed this traditional picture.

Our Solar System provides a plethora of examples of chaotic
motion. The theory of chaos has been used to explain, and in some
cases predict, the location and extent of gaps in the asteroid and
Kuiper belts1±7. The theory predicts that irregularly shaped satellites
such as Hyperion tumble chaotically8. The obliquity of Mars under-
goes large excursions9; these are chaotic10,11. Even the obliquity of the
distant future Earth may undergo chaotic evolution in 1.5±4.5 Gyr

(refs 12±14). Furthermore, the chaos in the orbits of the giant planets,
®rst observed by Sussman and Wisdom15, is due to a three-body
resonance among Jupiter, Saturn and Uranus16; the locations of these
planets cannot be predicted on a timescale longer than a few tens of
millions of years. This supports numerical experiments that showed
that our planetary system evolves chaotically15,17. The worried reader
may ®nd some comfort in that the accompanying analytic theory
predicts that no planet will be ejected before the Sun dies.

The rigid pendulum
Despite the variety and complexity of the applications mentioned
above, we can introduce many of the concepts in solar system
dynamics using the pendulum: phase space structure, periodic
motion and stability. To describe the state of the pendulum we
must specify both its position (such as the angle from the downward
vertical, v, see Fig. 1) and velocity (such as the rate of change of the
angle with time, vÇ, or the momentum p � mlvÇ, where m is the
effective mass of the pendulum and l is the length). The structure of
the phase space is built around ®xed points (see Fig. 2). When the
pendulum is hanging straight down and motionless we have a ®xed
point. There is another ®xed point when the pendulum is straight
up and motionless. Readers equipped with a pencil can immediately
see that these two points are different: dangling a pencil loosely
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Figure 1 A rigid pendulum, with angle v measured from the vertical. The pendulum

may rotate through 3608, unlike a simple pendulum consisting of a mass suspended

on a string.
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Figure 2 The motion of a rigid pendulum traces closed curves on the phase diagram,

showing the angle of pendulum, v, versus its angular momentum, p � mlvÇ. The

stable ®xed point is at (0,0). The separatrix (see text) emanates from the unstable ®xed

point at (6p,0). The shape of the separatrix resembles a cat's eye.
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between two ®ngers is easy, but balancing a pencil upright chal-
lenges the most dextrous.

If a pendulum at the downward ®xed point is nudged it begins to
oscillate or librate back and forth; this ®xed point is said to be stable.
If a pendulum momentarily balanced on its head is gently nudged it
swings down and back up on the other side; this ®xed point is
unstable. If the pendulum is pushed forcefully enough it will rotate
periodically. Thus, we see three main regions of the phase space:
circulation in one direction, libration, and circulation in the other
direction. These three regions are separated by the curve that
connects the unstable ®xed point to itself. This curve forms the
`cat's eye' in Fig. 2, and is called the separatrix. All trajectories inside
the separatrix are said to be in resonance. Trajectories well outside
the `cat's eye' have enough kinetic energy to be unaffected by the
gravitational potential. They rotate with an almost ®xed angular
frequency. In contrast, trajectories inside the resonance are
dominated by the potential; they librate. The average value of vÇ in
the resonance is zero, which is a generic signature of resonant
phenomena.

The separatrix is the cradle of chaos. Suppose we reach in a hand
and just nudge a moving pendulum in an attempt to change the
character of its motion. If the pendulum is far from the separatrix
(either librating near the stable ®xed point or rotating) the nudge
will not change the character of the motion. However, close to the
separatrix the pendulum nearly stands motionless on its head once
every libration or rotation period. A nudge can then change rotation
into libration, libration into rotation, or rotation in one direction
into rotation in the other direction. Aside from the separatrix, all the
orbits in Fig. 2 lie on closed curves. These curves are called invariant
curves; similar curves appear in most dynamical systems.

In order for chaos to occur there must be at least two interacting
oscillators. In the Solar System that interference is supplied by a
third body, the invisible `hand' made immanent. This interference
manifests itself as zones of chaotic motion, which are the `ghosts' of
the departed separatrices. That phase space would harbour regions
where trajectories are largely quasiperiodic and regions where
trajectories are largely chaotic is a feature of generic dynamical
systems. This characteristic is known as a divided phase space18,19

(see Box 1).

Kirkwood gaps
A series of remarkable features in the asteroid belt vividly illustrates

the importance of dynamical chaos in the Solar System. The
distribution of semimajor axes of the orbits of the asteroids contains
a number of distinct gaps (see Fig. 3). These are called Kirkwood
gaps20. Kirkwood ®rst identi®ed them and noted that they occur at
locations where the orbital period, T, which depends on the
semimajor axis, would be of the form (p/q)TJ, where TJ is the orbital
period of Jupiter and p and q are integers. In terms of the orbital
frequencies, n � 2p=T, qnJ 2 pn < 0; in other words, this is a
resonance. Nearly a century passed before it was explained2,3 how
a resonance produced a shortage of asteroids, or a gap. The reason
for this delay can be appreciated by making a simple estimate of the
strength of a resonant perturbation. The force is proportional to the
mass of Jupiter, which is mJ < 0:001 in units of the solar mass. Worse
still, the resonant force is zero if the orbits are circular (for a planar
model). If the orbits are non-circular, with an eccentricity e for the
asteroid and eJ for Jupiter, the force is proportional to ejp 2 qj2 ses

J,
where s is an integer between zero and jp 2 qj. For example, for a 3:1
resonance p � 3 and q � 1, three force terms are possible: e2, eeJ,
and e2

J. Because e < eJ < 0:05, the force exerted on the asteroid by
the resonance is smaller by a factor of 5 ´ 10-5 than the force exerted
by the Sun, in the best possible case of a ®rst-order resonance
(jp 2 qj � 1).

Laplace noted even before the discovery of the Kirkwood gaps
that a resonant force adds up over many orbits, but only up to half
the libration period (the time to go halfway around the `cat's eye' in
Fig. 2), which is proportional to the inverse of the square root of the
resonant force. The integrated force is then larger, roughly like the
square root of mJe

|p-q|. This is still a small effect, so it is dif®cult to see
how the asteroid can be ejected from the resonance.

Even if the force added up over longer times, theorems on the
behaviour of dynamical systems from the 1950s and 1960s suggested
that gap formation might be dif®cult. For example, the motion of a
typical asteroid in an imaginary solar system with very small
planetary masses lies on invariant curves similar to those in Fig. 2
(see Box 1). This is a speci®c example of the KAM theorem21±23. In
exceptional cases, near the separatrix of a resonance, the theorem
does not apply.

That the theorem is restricted to very small masses suggests a way
to evade the dilemma; perhaps for realistic values, invariant curves
at substantial distances from the separatrix are destroyed. Numer-
ical integrations of a simpli®ed model, incorporating only a single
planet (Jupiter) on a ®xed ellipse, showed that the invariant curves
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Figure 3 The histogram of asteroids as a function of semimajor axis a. We note the

distinct de®cit of asteroids at, for example, 2.5, 2.82, and 2.96 AU. Gaps of this type

were ®rst noted by Kirkwood in the late 1800s. They correspond to orbital resonances

with Jupiter; for example, an asteroid placed at 2.5 AU will orbit with a period equal to

one-third of Jupiter's (the 3:1 resonance).
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Figure 4 The orbital eccentricity of an object placed in the 3:1 resonance (at 2.5 AU)

plotted as a function of time. The initial eccentricity is small, but chaotic perturbations

from Jupiter force the eccentricity e of the asteroid to undergo a random walk, leading

to a net increase in e and the eventual removal of the asteroid from the Solar System.
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Box 1
Chaos and resonance overlap

Here we describe a simple model that captures many of the generic
features of conservative or hamiltonian dynamical systems. As stated
earlier, at least two oscillators must be interacting or coupled for chaos
to occur. We can add a second oscillator to the rigid pendulum by
vertically (or horizontally) moving the pivot of the pendulum periodically.
Much insight can be gained by carefully examining this and similarly
simple models4,6,27,28.

To describe the motion we now need two angles, say the angle of
the pendulum, v, and the phase of the pivot, w. In addition we need two
angle derivatives, vÇ or p � vÇ=b, and wÇ . The hamiltonian is

H �
1

2
bp2

� aI � �e � 2Kcosw�cosv

�
1

2
bp2

� aI � ecosv � Kcos�v 2 w� � Kcos�v � w�

�1�

The ®rst line presents an amplitude-modulated pendulum; the second
presents three phase-modulated pendulums. See ref. 25 for a detailed
development. Several constants depend on the physical characteristics
of the driven pendulum: b is related to the moment of inertia of the
pendulum; 2K is the amplitude of the driving; and e is proportional to
the gravitational acceleration. The constant a is the driving frequency
or wÇ , and I is the negative of the total energy of the pendulum.

There are three resonances (cosine terms) which dominate the
motion when their arguments are slowly varying: vÇ < 0, vÇ < wÇ, and
vÇ < 2 wÇ. We can visualize the trajectories by plotting p versus v

whenever the driving reaches a speci®c phase, w � 0 for example. The
resulting diagram is called a surface of section.

The ®gure shows surfaces of section for b � 1, e � 2 1, and
K � 2 0:3. Panels a, b and c correspond to decreasing driving
frequencies of a � 7, 3 and 0.3, respectively. Here, the natural
oscillation frequency of the pendulum is

��������
jejb

p
� 1. The resonant

islands are located at p � 0 and bp � 6 wÇ � 6 a. The centre
resonant island has a half-width of DP � 2

������������
jej=jbj

p
� 2 and the other

two have half-widths of DP � 2
��������
K=b

p
< 1:1. So, for the highest driving

frequency (a) the centres of the resonant `islands' are separated by
more than their widths. Aside from the additional resonant islands, two
new features appear. First, two chains of secondary islands can be
seen. Second, the separatrix of the main island has broadened into a
fuzzy zone. This zone was traced out by a single trajectory. Each of the
separatrices shows such a chaotic zone, although they are too small to
discern. Nevertheless, what appear to be invariant curves
corresponding to regular trajectories can still be seen. That both
regular and chaotic trajectories should appear on the same surface of
section is a generic feature of a divided phase space18,19,28.

In b the driving frequency has been reduced, a � 3, such that now
the islands, ignoring their interaction, just touch each other. As the
driving frequency approaches the natural oscillation frequency of the
pendulum, the small chaotic zone seen in a envelopes the three
resonant islands. This is the result of the beginning of resonance
overlap28.

In c the driving frequency has been further reduced, a � 0:3, such

that now the resonances have widths much larger than their
separations. The motion is chaotic near the separatrix, which appears
as a single thick band surrounding a stable island, and is surrounded
by invariant curves. As can be seen from the hamiltonian, the three
resonant terms can also be viewed as a single resonance with an
oscillating width, DP � 2Îje � 2K coswj=b. The width ranges from
DP < 1:3 to DP < 2:5, for the chosen values of e and K. Here, the
chaotic zone is roughly that region over which the separatrix sweeps.
This is termed modulational chaos51 or adiabatic chaos4.

In discussing the origin of chaotic motion in the main text, we have
treated the region of overlap as though it had no structure. This
simpli®cation is justi®ed in some cases (for example in high-order
resonances in the asteroid belt) and for some applications (for
calculating Lyapunov times), but is not always adequate.

For example, the eccentricity of asteroids in the 3:1 resonance
could librate around two different centres, one at the classical `forced
eccentricity' ef < 0:05 and a second at e < 0:15 (ref. 3). The chaotic
region surrounded the separatrix between these two points, allowing
asteroids to pass from low (,0.05) to high (,0.3) eccentricities, where
they could be removed by encounters with Mars. Later a third libration
centre at even higher eccentricity was discovered, connected to the
®rst two by chaotic orbits52. This allowed asteroids to reach e . 0:06;
such objects are removed from the resonance, typically by plunging
into the Sun. This motion is made possible by the resonance overlap,
but describing it naturally requires knowledge of the underlying phase
space structure; or we can perform numerical simulations.

Direct brute-force numerical integration indicates that plunging into
the Sun is the most likely fate of bodies injected into the 3:1 resonance,
with the remainder being pushed beyond Saturn53. These integrations
®nd a removal time of about one million years. There is also direct
observational evidence that this interpretation is correct because the
boundaries of the chaotic zone closely match the boundaries to
observed distribution of asteroids3. Similar statements can be made
about the other Kirkwood gaps and gaps in the outer asteroid belt6 (see
Fig. 6).

A more realistic model for the 3:1 mean motion resonance, still for a
single perturbing planet, would include terms of order I2, and allow for
(different) I dependences in the factors K multiplying the cosine terms
involving w. Such a model reproduces the two libration centres in the w,
I motion found by Wisdom. Because the analytic model that we, and
Wisdom, employ is of low order in e, it misses the third libration centre
found in ref. 52.

More complete dynamical models, in particular those that include
the effect of Saturn on Jupiter's orbit, show that secular resonances,
that is, resonances between the precession periods of the asteroid
and those of Jupiter and Saturn, overlap inside low-order mean motion
resonances such as the 2:154,55. This overlap can enhance the rate of
diffusion. Even this is not the entire story; Jupiter and Saturn are near
(but not in) a 5:2 resonance. This `great inequality' enhances the
rate of diffusion of asteroids in the 2:1 mean motion resonance with
Jupiter56.

Box 1 Figure Surface of section for the driven pendulum. a,
Driving frequency much faster than the natural pendulum oscillation
frequency. b, Driving frequency approaching the natural pendulum

oscillation frequency. c, Driving frequency less than the natural
pendulum oscillation frequency.
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were destroyed in the vicinity of the 2:1 resonance1. This removed
the barrier of the KAM theorem. Unfortunately, these ,100,000 yr
integrations1, although they established the presence of chaotic
orbits, did not give any hint as to how the irregular motion led to
the removal of an asteroid from the resonance1,24.

Then Wisdom showed by direct numerical integration that the
eccentricity of small bodies placed in the 3:1 gap alternates cha-
otically between periods of low and moderate eccentricity as the
result of perturbations from Jupiter2 (see Fig. 4). This result relied
upon the development of an algebraic mapping that could ef®-
ciently follow the long-term motion of asteroids in the 3:1 mean
motion resonance with Jupiter for a million years or longer. This is a
recurring theme in Solar System dynamics: more ef®cient algorithms
and faster computers permit longer, more accurate integrations that
often reveal unexpected dynamical results.

What is the source of the chaos in the 2:1 and 3:1 mean motion
resonances? It has long been known that each mean motion
resonance is composed of several individual resonant terms25. For
example in the 3:1 resonance there are three such terms in the planar
case, as mentioned above. All of these resonances are weak, but they
are also close together2±4,26. It is the close proximity of multiple,
albeit weak, resonances which invalidates the simple estimate for the
integrated force given above. A single resonance produces a small
force integrated over a libration period, and a simple `cat's eye' in
phase space with a smooth separatrix. Adding a second weak
resonance breaks up this smooth separatrix in a chaotic region
(see Box 1). The separatrix is broken because the second resonance
`nudges' the pendulum represented by the ®rst resonance, altering
the motion, particularly that of orbits that pass near the unstable
®xed point27. As a result the motion from one passage near the ®xed
point to the next is uncorrelated. The resonant force is still small
compared to the force exerted by the Sun, and produces only small
changes over a libration period. But over times longer than a
libration period the asteroid experiences uncorrelated forces.

As a result of these uncorrelated forces the motion in the chaotic
zone differs from that in a regular region; the chaotic motion is very
sensitive to initial conditions. Suppose we take two copies of our
interacting oscillators, released from slightly different positions. In
one case we start near a stable ®xed point, well away from the
separatrix. Here the motion is regular and the two copies of the
apparatus separate from each other linearly (or polynomially) in
time (see Fig. 5). In the other case we start the two copies near an
unstable ®xed point. Now the separation increases exponentially in
time. The timescale for this separation is called the Lyapunov time,
TL.

We can estimate the Lyapunov time of an asteroid placed
arti®cially in the 3:1 mean motion resonance. There are only two
relevant timescales in the problem: the libration period and the
precession period. From our argument above, large-scale chaos
occurs when the separation of the `islands' (or `cat's eyes') is
comparable to their widths28, that is, when the resonances overlap.
Another way to say this is that large-scale chaos occurs when the
libration and precession periods of a resonant asteroid are similar.
Then the Lyapunov time must be equal to the libration periodÐthe
only timescale in the problem29. In the case of the 3:1 resonance the
precession period is 3 ´ 104 years, whereas the numerically deter-
mined Lyapunov time is 1.4 ´ 104 years.

The two types of trajectories differ in more than their rates of
separation. The chaotic trajectory can explore a larger volume of
phase space than is accessible by a regular trajectory. For asteroids
this extra measure of freedom can be dangerous, opening routes by
which they can be ejected or cannibalized by planets2±5 (it's world-
eat-world out there).

In higher-order resonances, where the phase-space structure is
relatively simple, the uncorrelated or chaotic forces lead to simple
random walks involving only small exchanges of energy between the
planet and the asteroid, because the semimajor axes of both bodies

are nearly ®xed by the resonance condition. This is not so for the
angular momentum; the torques associated with the uncorrelated
forces produce a random walk in the angular momentum of both
bodies. This leads to a classic gambler's ruin problem with the
asteroid playing the part of the gambler and the planet taking the
role of the house. If either body loses most of its angular momen-
tum, that body's orbit becomes highly eccentric and subject to
collisions with other objects in the Solar System or ejectionÐwhich
is analogous to bankruptcy. The planet, with its much larger mass,
has more capital (angular momentum) that the asteroid. Even
worse, the asteroid is like a gambler forced to limit his winnings
to what he can carry in this pockets; because of its small mass the
asteroid cannot absorb enough angular momentum to produce a
substantial change in the orbit of the planet. The two trade angular
momentum back and forth, but when the inevitable happens and
the asteroid loses its small stock of angular momentum, it is
abruptly escorted from the cosmic casino.

We can estimate the time needed to remove the asteroid. Because
the motion is chaotic we can treat the resonance angle as a random
variable, which drives random changes in the eccentricity. In
the case of the 3:1 resonance the changes in e2 are of order
De2 < �TL=T J��MJ=M(�e

2, using the Lyapunov time, TL, as the
interval associated with the random changes (MJ, TJ, and M( are
Jupiter's mass, Jupiter's orbital period, and the Sun's mass, respec-
tively. The short-term average eccentricity diffuses to large values in
a time of about one million years.

In some cases, such as the asteroid Helga in the 12:7 resonance,
the motion is chaotic with a very short Lyapunov time, but the
diffusion time is comparable to or larger than the age of the Solar
System. When applied to Helga this theory predicts that the asteroid
should survive for about 8 billion years. Direct numerical integra-
tions agree with this prediction6.

We note that the largest gap, that between the 1:1 resonance
harbouring the Trojan asteroids, and the Hildas in the 3:2 reso-
nance, is the result of the overlap of distinct mean motion
resonances30; for example the 4:3 resonance overlaps with the 5:4,
the 5:4 with the 6:5, and so forth.

It is believed that most meteorites come from one of two sources,
the 3:1 mean motion resonance and the n6 secular resonance4,31,32.
The latter involves a resonance between the precession frequency of
the apsidal line of the asteroid and the sixth fundamental secular
frequency of the Solar System (which is very roughly Saturn's
precession frequency). Roughly equal numbers of meteorites
come from each type of resonance. Until recently there was one
dif®culty with this idea. The cosmic ray exposure ages (a measure of
the delivery time) of the stony meteorites are typically 20 Myr
(ref. 33), whereas the delivery time from the 3:1 resonance is
much shorter, 1 Myr. However, recent simulations34 suggest a way
out of this dilemma: most meteorites, which are produced by
collisions between larger bodies in the asteroid belt, are not injected
directly into either the 3:1 or the n6 resonance. Rather, they are
placed in the vicinity of the resonance, and then dragged into the
unstable region by the Yarkovsky effect34, which arises due to the
anisotropic thermal radiation from those regions of the fragment
which are exposed to the Sun. With the addition of this slow
dynamical precursor, the theory of meteorite delivery appears to
be complete.

Chaotic spin±orbit resonances
One of the most important examples of chaos is afforded by the
evolution of planetary spins. This chaos is produced by resonances
between spin and orbit precession periods. In such resonances, the
asphericity of the planet couples to the non-axisymmetric pertur-
bation produced by orbital eccentricity or inclination. The small
deviations from perfect sphericity, typically a few parts in a
thousand for larger bodies like planets, leads to signi®cant
exchanges of energy and angular momentum between orbital and
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rotational (or spin) motions of satellites and even planets. Reso-
nances between spin period and orbital period are common in the
Solar System, the Moon being a prominent example. The phase
space occupied by such resonances is small, making it unlikely that
so many bodies formed in resonance. This paradox is explained by
the fact that dissipative effects tend to drive bodies into these
resonances, where the motion is stabilized35,36. As a result, most
resonant satellites are currently deep in their respective one-to-one
spin±orbit resonances, where the motion is regular; however, in one
case, Saturn's satellite Hyperion, the chaotic motion may have
persisted until the present8.

Because solar tides are so weak, dissipative effects tend to be less
important for planetary spins, allowing for richer dynamics. Ward37

showed that the angle between the spin and orbital axes of Mars (the
obliquity) varies by 613.68 around its average of 248 over millions of
years. These variations are a result of a resonance between the
precession of the spin axis and a combination of orbital precession
frequencies; improvements in orbital models resulted in an
increased variation of 6208 (ref. 9). Numerical integrations then
showed that the obliquity of Mars is evolving chaotically, and varies
over an even larger range10,11. Such a variation has profound, but as
yet poorly understood, implications for climate variation. It is likely
that the spin axes of Mercury and Venus underwent chaotic
variations in the past11.

The tilt of the Earth, currently 238, will also increase in the
future12; the Moon will evolve outward under the in¯uence of the
tides, resulting in a decrease in the precession rate of the Earth.
Eventually the precession rate will become resonant with yet
another combination of orbital precession rates. Once again,
numerical integrations show that the Earth's obliquity will vary
chaotically13,14. The tilt of the Earth's axis may increase to 908. The
effect on our climate is hard to estimate, but the result is unlikely to
be pleasant.

Three-body resonances
Numerical integrations of main-belt asteroids show that a substan-
tial fraction of these bodies have chaotic orbits with rather short
Lyapunov times (,105 years)6,38,39. Most of this chaotic motion is
not associated with any two-body resonance. Instead it is the result
of the interaction among three bodies: the asteroid, Jupiter, and
either Mars in the inner asteroid belt or Saturn in the main or outer
asteroid belt38,39. As with Helga, the Lyapunov times can be quite
short, but the diffusion times are comparable to or longer than the
age of the Solar System.

Three-body resonances arise when one planet, such as Jupiter, is
perturbed by a second, such as Saturn. The orbit of Jupiter is then no
longer a simple keplerian ellipse. The potential experienced by the
asteroid in Jupiter's gravitational ®eld is given by an expression
formally equivalent to the two-body case, but Jupiter's orbital
elements now vary with time. This variation introduces a whole
new suite of frequencies into the potential experienced by the
asteroid; in addition to all the harmonics of Jupiter's period, all
the harmonics of Saturn's orbital period appear as well. Three-body
resonances have also been considered for the galilean and uranian
satellites, as well as in ring systems40±42.

These new terms in the potential have much smaller amplitudes
than do two-body resonant terms that have the same number of
powers of eccentricity. Three-body resonances are proportional to
the product of the masses of the two perturbing bodies, MJ and MS

in our example, rather than just MJ as in a two-body resonance.
The structure of a three-body resonance is similar to that of a

two-body resonanceÐmultiple, very narrow components sepa-
rated in semimajor axis by an amount that depends on the
precession frequencies of the bodies involved. When the separation
is comparable to or smaller than the width of the individual
resonances, the motion in the immediate vicinity of the resonance
will be chaotic. We can then estimate the Lyapunov time and the

diffusion time in the same manner as for two-body resonances.
We have searched the catalogue of asteroids for evidence of gaps

at the location of a number of the stronger three-body resonances.
We have not been able to identify a candidate gap.

We can check the theory in other ways. For example, some
asteroids on the inner edge of the belt (near Mars) could have
formed in three-body resonances involving the asteroid, Mars and
Jupiter. If the diffusion time of some of these asteroids is comparable
to the age of the Solar System, we should be able to ®nd objects that
are about to be removed from the belt owing to close encounters, or
possibly collisions, with either Mars or Earth. Such bodies may have
already been discovered: the so-called near-Earth asteroids43. These
bodies have been a puzzle for astronomers, as in their present orbits
they have very short lifetimes, typically millions of years. Because
the Solar System is billions of years old, objects with lifetimes of
millions of years should have vanished long ago, unless there is some
way to replenish the supply. The theory of three-body resonances
offers a possible mechanism.

Chaos among the giant planets
Even trajectories outside but near a resonance can be affected by its
presence. In the century following Newton's publication of his law
of universal gravitation, astronomers noted that the positions of
Jupiter and Saturn deviated from their predicted positions by some
30 minutes of arc. The difference became known as the great
inequality. Laplace noted that the predictions did not take into
account the in¯uence of Saturn on Jupiter's orbit, and vice versa. On
the face of it this seemed reasonable, because the mass of either
planet was less than one one-thousandth that of the Sun. Early
astronomers had made the naive estimate outlined above in our
discussion of the Kirkwood gaps, which integrates this tiny force
over the interval between successive conjunctions of the planets, a
time somewhat longer than TJ. But Laplace realized that the orbital
period of Saturn was almost exactly 5/2 times that of Jupiter
(2=TJ 2 5=TS < 1=85T J). The perturbations accumulate over a
much longer interval (85TJ), permitting a larger exchange of
energy and angular momentum between the two planets. The
change in the predicted position of the planet on the sky was
roughly 85 ´ 85 times larger than the simple estimate would
indicate. With this result, Laplace was able to reconcile the observa-
tions with the prediction of the law of gravity.

This discovery strongly affected Laplace's views regarding deter-
minism, re¯ected in his well known statement44:

The present state of the system of nature is evidently a conse-
quence of what it was in the preceding moment, and if we
conceive of an intelligence that at a given instant comprehends
all the relations of the entities of this universe, it could state the
respective position, motions, and general affects of all these
entities at any time in the past or future.
Physical astronomy, the branch of knowledge that does the
greatest honour to the human mind, gives us an idea, albeit
imperfect, of what such an intelligence would be.

This view of the world passed into common currency: the clockwork
motion of the planets became the epitome of regularity.

This view is wrong. It is wrong because it ignores the delicate
nature of the separatrix, the cradle of chaos. The giant planets
provide further evidence of the power of three-body resonances, the
subtlety of natural phenomena, and the dif®culty of interpreting the
fruits of scienti®c enquiry.

The tour de force numerical integrations of the outer planets in
1988 (ref. 45) shattered the clockwork. Using the `Digital Orrery', a
parallel computer built speci®cally for the task and now part of the
Smithsonian collection in Washington DC, they followed the
motion of the four giant planets and Pluto (as a test particle) over
845 Myr. To the surprise of all at the time, Pluto's orbit was chaotic
with TL < 10 million years.
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The breakthrough was followed by a re-examination of the orbital
evolution of the full Solar System. Longer integrations46,47 of an
approximate model of the Solar System (the orbits were averaged,
and Pluto was ignored) showed that the Solar System itself was
chaotic. Laskar suggested that secular resonances involving the
terrestrial planets were responsible for the chaotic motion46,47.
Subsequent integrations of a complete model15 con®rmed that the
full Solar System was chaotic with TL < 5 Myr. Sussman and
Wisdom also found that the four giant planets by themselves
appeared to form a chaotic system15.

The chaos amongst the four giant planets arises from a three-
body resonance involving Jupiter, Saturn and Uranus16. The orbital
period of Uranus is nearly seven times that of Jupiter. In terms of the
orbital frequency n � 2p=T, the difference nJ 2 7nU is equal to
5nS 2 2nJ. The relevant resonant terms in the potential experienced
by Uranus are proportional to MJMS=�2 2 5nS=nJ�. This `small
denominator', �2 2 5nS=nJ� < 1=85, enhances the potential experi-
enced by Uranus by a factor of 85. It was of course this small
denominator that Laplace used to explain the origin of the great
inequality, and which is implicated in the removal of objects from
the 2:1 resonance in the asteroid belt.

The width of a single component of this three-body resonance is
tiny, comparable to the radius of Uranus, but so is the separation
between components; the resonances just overlap. The predicted
Lyapunov time is TL < 10 million years. Because Uranus is so
much less massive than either Jupiter or Saturn, its orbital angular
momentum is substantially less than that of the two gas giants. By
the analogy above, it is hence subject to the gambler's ruin. The
diffusion time (roughly the time before Uranus is ejected) is 1018

years, much longer than the current age of the Universe. The theory
also predicts the location and Lyapunov times of other chaotic zones
near the present orbit of Uranus. Detailed numerical integrations
verify the presence and Lyapunov times of all these zones, as well as
illustrating the transitions between libration and rotation in the
relevant resonances. Current computational resources are inade-
quate to test the predicted diffusion time.

Chaos among the terrestrial planets
As noted above, numerical integrations of the full Solar System,
inner planets included, show evidence of chaos with a Lyapunov
time of TL < 5 million years15,17. Unlike the outer planets, the
source of this chaos has not been convincingly established. Lasker
pointed to what are called `̀ secular resonances'' between the
terrestrial planets as a candidate source of the chaos46. He

found what appears to be an alternation between circulation
and libration in the angles j1 [ �qÅ 1 2 qÅ 5�2 �­1 2 ­2� and
j2 [ 2�qÅ 4 2 qÅ 3�2 �­4 2 ­3�. In these relations qÅ 1 refers to the
orientation of Mercury's apsidal line, which is the line from the Sun
to the point of Mercury's orbit closest to the Sun, whereas ­1 refers
to the orientation of Mercury's nodal line; the latter is de®ned by the
intersection of the orbital plane of Mercury with the orbital plane of
the Earth. Similar de®nitions apply to the elements for Venus
(subscript 2), Earth (3), Mars (4), and Jupiter (5). However, these
two resonances do not interact directly with each other, so
by themselves they are unlikely to produce large-scale chaos.
Later integrations47 identi®ed a third resonance, j3[
�qÅ 4 2 qÅ 3�2 �­4 2 ­3�. Laskar found that it librated while j2

rotated, and vice versa. As j2 and j3 involve the same degrees of
freedom, they are a more promising candidate for overlapping
resonances. Sussman and Wisdom15, employing a more realistic
(unaveraged) model, con®rmed the alternate libration and rotation
of j2, but never saw j3 librate; this does not rule out the possibility
that the overlap of the associated resonances causes the chaos.
However, their assessment that `̀ no dynamical mechanism for the
observed chaotic behaviour of the Solar System has been clearly
demonstrated'' seems warranted, at least for the terrestrial planets.
Without a clear identi®cation of the source of the chaos it is not
possible to use an analytic development, such as was used for the
outer planets, to con®rm the Lyapunov time and then estimate the
timescale for diffusion of the system.

Chaos in other planetary systems
By analogy with our Solar System, multiplanet systems seem likely.
In fact three Jupiter-mass objects orbit Upsilon Andromeda48. Any
multiple-planet system is subject to the instabilities described in this
Review. All of the known planetary systems orbiting solar-type stars
have ages of 109 years or greater. This, together with the copernican
assumption that we are not observing the system at a privileged
time, such as immediately after a recent planetary ejection, can be
used to put limits on the masses and orbital elements of the planets,
quantities which cannot be tightly constrained or even directly
observed using current techniques49,50. Dynamical constraints can
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also be placed on the existence of smaller (Earth-mass) bodies in
orbits near those of the Jupiter-mass objects. Observational searches
for such low-mass companions will have to await improved
techniques. M
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